Evaluation of the optimal dose of morphine in cancer pain
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Department of pharmacy, National Sapporo Hospital
Department of clinical research, National Sapporo Hospital

Summary : We now present such a method for the simultaneous analysis of morphine, morphine-3-glucuronide
(M-3-G) and morphine-6-glucuronide (M-6-G) by high-performance liquid chromatography (HPLC). Morphine
is a potent opioid analgesic used traditionally for the long-term treatment of moderate to severe cancer pain. In
human, morphine is metabolized primarily to two glucuronide metabolites, M-3-G and M-6-G to be
pharmacologically active. Thus, it is important to measure the plasma concentrations of M3G, M6G, and
morphine in order to more fully interpret pharmacodynamic / pharmacokinetic data obtained from patients
treated with morphine. Before any analgesic can be selected one must determine the analgesic requirement. An
accurate analgesic history will be helpful in determining the analgesic dose. The needs of the patient will dictate
the route or desired interval. As always, therapy should be individualized to specific patient requirements. Drug
selection should be based on established evidence.
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Drug challenge tests in neuropathic pain
Masakazu Hayashida, Hideko Arita, Hiroshi Sekiyama, Yuichiro Saito, Hisako Usui
AKki Meno, Shigehito Sawamura, Ryo Orii, Choku Yajima, Kazuo Hanaoka
Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital
*Surgical Center Research Hospital, Institute of Medical Science, The University of Tokyo

Summary: Neuropathic pain is frequently refractory to a variety of therapies. We performed drug
challenge tests (DCT) with various drugs including morphine, ketamine, lidocaine, thiopental,
phentolamine, and ATP in 37 patients with peripheral neuropathic pain to differentiate mechanisms
underlying the neuralgia and hopefully, to identify potentially effective therapeutics. Pain scale was
significantly decreased with 5 drugs other than phentolamine. The reduction in pain scale appeared to be
greater with ketamine, ATP and morphine than with other 3 drugs, and responders to ketamine were
greater in number than those to other drugs. These results indicate that in patients with peripheral
neuropathic pain ketamine can be the first drug of choice, and that ATP and morphine may be also

effective albeit in a more limited number of patients.
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Dual actions of big dynorphin on nociceptive transmission in the mouse spinal cord

Koichi Tan-No, Akihisa Esashi, Osamu Nakagawasai, Fukie Niijima, Takeshi Tadano

Department of Pharmacology, Tohoku Pharmaceutical University, Sendai Japan

Summary: The effect of big dynorphin (BD), a prodynorphin-derived peptide consisting of dynorphin A and

dynorphin B, on nociceptive transmission in the mouse spinal cord was examined.

BD at an extremely low

dose (3 fmol) produced nociceptive behaviour which might be mediated through the activation of the NMDA

receptor ion-channel complex by acting on the polyamine modulation site.

Inversely, BD at higher doses

(30-300 pmol) produced a dose-dependent antinociceptive effect which might be through a close connection

between k-opioid receptors and polyamine modulation site.
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Effects of formalin-induced pain on the development of tolerance to and physical
dependence on morphine in mice - Studies by serum corticosterone —

Norifumi Shimizu, Shiroh Kishioka
Department of Pharmacology, Wakayama Medical University, Wakayama Japan

Summary: The present study was designed to investigate the effect of formalin-induced pain on the
development of tolerance to and physical dependence on morphine in mice. A single injection of morphine
elicited serum corticosterone (CS) increase, dose-dependently. The morphine-induced increase in serum CS
was attenuated after chronic morphine treatment, indicating that tolerance was developed. Intraplantar
injection of formalin diminished the attenuation of morphine-induced serum CS increase due to chromic
morphine treatment. Serum CS was increased by naloxone-precipitated morphine withdrawal. The increase in
serum CS was dependent on both injection period and dose of morphine, and on dose of naloxone, indicating
that the naloxone-induced serum CS increase may be an useful index of the intensity of morphine withdrawal
in mice. Intraplantar injection of formalin inhibited the naloxone-induced increase in serum CS level. These
results suggest that formalin-induced pain suppresses the development of tolerance to and physical

dependence on morphine.
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vincristine

NO-cGMP

The possible involvement of spinal nitric oxide-cGMP pathway
in vincristine-induced painful neuropathy in mice

A. Saitoh, N. Tamura, J. Kamei
Department of Pathophysiology and Therapeutics, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University

Summary: Several lines of evidence indicated that the vinca alkaloid
vincristine, a widely used chemotherapeutic agent, produces painful
peripheral neuropathy in humans. However, the mechanisms underlying the
development of vincristine-induced painful neuropathy are poorly
understood. Nitric oxide (NO)-guanosine 3',5 -cyclic mono phosphate
(cGMP) pathway has been reported to be involved in spinal transmission of
nociceptive information. Thus, in the present study, we examined whether
alterations in spinal nociceptive processing via NO-cGMP pathway
contribute to vincristine-induced painful neuropathy in mice. Vincristine
(0.125 mg/kg) was intraperitoneally administered twice a week for six weeks.
In vincristine-treated mice, a significant decrease in tail-flick latencies
developed at four weeks after treatment. Subcutaneous pretreatment with
L-arginine (30 — 300 mg/kg), a substrate of NO synthase, dose-dependently
increase the tail-flick latencies in vincristine-treated mice to the level that
observed in naive mice. The increase in tail-flick latencies induced by s.c.
pretreatment with L-argininein vincristine-treated mice was reversed by i.t.
pretreatment with N®-nitro-L-arginine methyl ester (L-NAME, 3 - 30 nmol),
a non-specific NO synthase inhibitor. Furthermore, intrathecal pretreatment
with 8-bromoguanosine 3', 5'-cyclic monophosphate (8-Br cGMP, 0.3 — 3.0
nmol), a cell-permeable cGMP analog, dose-dependently increase the
tail-flick latencies in vincristine-treated mice, but not in naive mice. These
results suggest that the dysfunction of L-arginine/NO/cGMP cascade may
trigger the vincristine-induced thermal hyperalgesia in mice.
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Fig. 1: Time course of the effect of

vincristine on tail-flick latency in mice.

Mice were i.p. treated with vincristine
at a dose of 0.05 mg/kg a day after the
measurement of pre-drug latency, and
treated with a dose of 0.125 mg/kg
twice a week until the final week of the
six-weeks study period. The control
group received an equal volume of
saline. Each point represents the mean
with S.E. for 10 mice in each group.
*P<0.05 compared with the
vehicle-treated group.
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Fig. 2: Effects of L-NAME, a
non-specific NO synthase inhibitor, on
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vehicle-treated mice. L-NAME was
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before the s.c. injection of L-arginine.
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Acute herpetic pain and nitric oxide in mice
Atsushi Sasaki, Ichiro Takasaki, Yoko Ueda,Tsugunobu Andoh,
Hiroshi Nojima, Yasushi Kuraishi
Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical
and Pharmaceutical University, Toyama Japan.

Summary: Percutaneous inoculation with herpes simplex virus type-1 (HSV-1) brought about
herpes zoster-like skin lesions. These mice showed mechanical pain-related responses (tactile
allodynia and mechanical hyperalgesia), but not thermal pain-related response (thermal
hyperalgesia) althought partial ligation of sciatic nerve showed mechanical and thermal
pain-related responses in mice. The adrenergic neuron blocker guanethidine and the
non-selective a-adrenoceptor antagonist phentolamine did not affect the mechanical pain-related
responses although these agents suppressed the mechanical pain-related responses induced by
partial ligation of sciatic nerve. These results suggest the sympathetic nervous system may not be
involved in the mechanical pain-related responses of HSV-1 inoculated mice and the mechanism
of pain-related responses is different between HSV-1 inoculation and surgical injury of sensory
neurons. NO production was increased in the spinal dorsal horn of HSV-1-inoculated mice.
Intrathecal injections of the non-selective NO synthase (NOS) inhibitor NG-nitro-L-arginine
methyl ester (L-NAME) and the selective NOS2 inhibitor S-methylisothiourea (SMT) inhibited
the NO production and mechanical pain-related responses. The selective NOS1 inhibitor 7-nitro
indazole (7-NI) was without effect on mechanical pain-related responses. Immunoreactivity of
NOS2, but not NOS1, was increased in the spinal dorsal horn. NOS2-immunoreactive cells were
widely located in the spinal dorsal horn. These results suggest that the NOS2-NO pathway in the
dorsal horn is involved in acute herpetic pain.
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Pain modulation by spinal P2 purinoceptors

Takayuki Nakagawa, Nannan Zhang, Maiko Okada, Makoto Fukui, Masabumi Minami and
Masamichi Satoh

Department of Molecular Pharmacology, Graduate School of Phar maceutical Sciences,

Kyoto University, Kyoto, Japan

Summary: Recent studies revealed that ATP plays a role in facilitating peripheral pain transmission via
ionotropic P2X-purinoceptors, although little is known about the roles of spinal P2 purinoceptors. In the present
study, we examined the roles of spinal P2X- and metabotropic P2Y-purinoceptors in pain transmission in rats.
We found that i.t. administration of P2Y-purinoceptor agonists UTP and UDP produced rapid and short-lasting
analgesic effects in normal and neuropathic pain model rats. On the other hand, i.t. administration of ATP and
o, B-methylene-ATPR, a P2X-purinoceptor agonist, caused rapid and short-lasting hyperalgesic and long-lasting
tactile alodynic effects. The ATP-induced alodynia gradually developed, remained even 7 days after the
administration, and was inhibited by co-administration of P2X-purinoceptor antagonists and morphine. These
results suggest that spinal P2X- and P2Y-purinoceptors play opposite roles in pain transmission, and the
ATP-induced allodyniawas likely to be due to P2X-purinoceptor-triggered neuronal plasticity.

Adenosine 5-triphosphate  ATP

ATP

2 1995

P2X3

ATP
2) P2

ATP P2X
34 ATP
P2X3

P2X 23
P2
P2y

P2

P2y

UTP



UDP

ATP

Sprague-Dawley

level

i.t.

10 pl L3-L4

25 G

1. Paw pressure

32 g/s

2. von Frey

10

von Frey

06g 3.84mN

pP2X

180 2509

L2-L5

vehicle
L4-L5

Randall-Sellitto
paw pressure

10
20

9

Fig.1

pP2X

nmol

nmol

nmol

sham

vehicle .t

06g 384mN

P2

ATP

paw pressure
ATP 1-100 nmol
o,p—methylene-ATP  1-30

P2y

UMP 100 nmol

UTP

UDP 10-100 nmol

30

5-10

UbDP

Seltzer
12
7
von Frey
7 9
10

i.t.

30

UTP 1-100
i.t.

5-10

uridine 100



3
B
-
g

160 opaE
I & UTP 100 fmad
160 . # LIDE 150 mimel
I o LIk 00 nmal
140 I - I uridisa 100 meeel
¥ .
120

100 ?ﬂp -+ “4:'"

Mociceptive threshodd (% of confrol}

a0 e . N
L= & ATP 180 nimal
a0 4 T B o JFmaitrglane-ATF 50 nmaol
|-_'| = = = — L o L L - = e
i} 10 20 3 40 B 6O

Tima after i 1. administration {min)

8) Dosa depandanca

1407 gure .
LG *
'I'—:' & LI -
:._ 120 O uriding - '
d : :
= : T &~
2 *
# 100 1--- e ¥ v
L 3
S ;
L]
40 L AATR "
B o |i-maltyssre-aTP
u] ' '
1 1m0 10
[ [nmol)
Fig.1 Effects of it. administration of ATP,

o,f-methylene-ATP, UTP, UDP, UMP and uridine on the
mechanical nociceptive threshold of normal rats in the paw
pressuretest.

(A) Drugs were i.t. administered at time 0. The mechanica
nociceptive threshold of each animal before the i.t. administration
served as the control value (100%). (B) The magnitudes of the
effects of ATPR, a,-methylene-ATP, UTPR, UDP, UMP and uridine
are presented as the AUC values from 0 to 30 min after i.t.
administration. The AUC vaue of vehicle-treated group was
assigned as a value of 100%. These values are presented as the
mean = SE.M. (n=6). *P<0.05, **P<0.01, ***P<0.001 compared
with the vehicle-treated group

inclined plane test

UTP UbP

UTP  P2Y P2Y, P2Y,
UDP  P2Y,

& SHL-PES
o Eran-PEE

& FRL-UTP 100 e
£ Sran-UTE | 060 smal
W ERL-UCP 100 Sl
O Eram-U0P 10 el

:'.‘_" ]
t . ™ - "'
£ o ;
% 1831 " 'l & 2 -.
23 F L]
£ 10 -
;: ‘-
54 -é- _:_....
| & u u
gl FES B - =4
4] 10 20 a0 & 50 B0

T after it admirestraticn {min)

Fig.2 Effects of i.t. administration of UTP and UDP on the
tactile allodynia induced by sciatic nerve-ligation in the von
Frey filament test in the neuropathic pain model.

Drugs or vehicle were i.t. administered to sham-operated (sham)
and sciatic nerve-ligated rats (SNL), respectively, at time O.
Allodynic scores are the sum of the scores for ten applications,
each of which was scored as 0, 1 or 2, as described in Methods.
The values are presented as the mean + S.E.M. (n=5-6).

*P<0.05 **P<0.01, ***P<0.001 compared with the
vehicle-treated group
P2Y,, P2Y,
P2Y¢ MRNA RT-PCR
P2Y MRNA
P2Y 46
P2X
5)
UTP
UDP it von Frey
Fig.2
UTP 30
100 nmol UDP 30 100
nmol i.t.
10 45
sham



P2Y 3146
5)
P2
P2X
P2Y
2 ATP P2X i.t.
ATP o, p—methylene-ATP
it von Frey
Fig.3 ATP 30-300
nmol o,B—methylene-ATP  10-100 nmol
it 5-10
30-45
120 300
nmol ATP 7
UTP (100 nmol)

UDP (100 nmol) i.t.

ATP 100 nmol

I T
___.-'.l"\-\.\_\_\_\_\_ . 5
_-{———* " T -

o Tm

E . | ‘&+
- = |

o F-\_'_--.'

E I

= __#—____-

3 b * e 1

- 1 ¥ & ATE 0 fEe

5 pe—— AP 100 mred
L W AT 300 el
ED S0 2 3 4 B &

days
Tirme alted i 1 Skl nbslr e

Fig.3 Effectsof i.t. administration of ATP on the allodynia to
thetactile stimuli in the von Frey filament test in normal rats.
ATP (30-300 nmol) or vehicle were i.t. administered at time O.
Allodynic scores are the sum of the scores for ten filament
applications, each of which was scored as O, 1 or 2, as described in
Materials and Methods. The values are presented as the mean +
SEM. (n=6-14).

ATP P2
suramin 30 nmol
PPADS 30 nmol
ATP
P2X

ATP

ATP  ecto-nucleotidase

ATP
P2X
pP2X

1) Ralevic, V and Burnstock, G. (1998) Receptors for
Purines and Pyrimidines. Pharmacol. Rev., 50,
413-492.

2) Chen, C.C., Akopian, A.N., Shilotti, L.,
Colquuhoun, D., Burnstock, G. and Wood, J.N.
(1995) A P2X purinoceptor expressed by a subset
of sensory neurons. Nature, 377, 428-431.

3) Hamilton, S.G. and McMahon, S.B. (2000) ATP as
a peripheral mediators of pain. J. Auton. Nerv.
Syst., 81, 187-194.

4) Tsuda, M., Koizumi, S,, Kita, A., Shigemoto, Y.,
Ueno, S. and Inoue, K. (2000) Mechanical
allodynia caused by intraplanter injection of P2X
receptor agonist in rats. involvement of
heteromeric  P2X,3 receptor signaling in
capsaicin-insensitive primary afferent neurons. J.
Neurosci., 20, 1-5.

5) Okada, M., Nakagawa, T., Minami, M. and Satoh,
M. (2002) Anagesic effects of intrathecal
administration of P2Y nucleotide receptor agonists
UTP and UDP in norma and neuropathic pain
model rats. J. Pharmacol. Exp. Ther., 303, 66-73.



M echanism of chronic pain following peripheral inflammation: plastic change of
nociceptive transmission in the spinal cord and neurotrophic factors

Hidemasa Furue, M atayoshi Satoru, Terumasa Nakatsuka, Megumu Yoshimura

Dept. of Integrative Physiol., Grad. Sch. of Med. Sci., Kyushu University, Fukuoka Japan.

Summary: Plastic changes of nociceptive transmission in the spinal cord after peripheral inflammation were
analyzed by using patch-clamp recordings from substantia gelatinosa (SG, lamina Il) neurons of in vivo animals
and spinal cord dices. In rats 2-4 days after inflammation, spontaneous activities of SG neurons originating
from the peripheral and increment of the innoxious and noxious mechanical excitatory synaptic responses were
observed. Brain-derived neurotrophic factor facilitated the excitatory synaptic transmission during the period.
Although SG neurons in naive rats received monosynaptic inputs mainly form As and C afferent fibers, the
percentage of SG neurons receiving monosynaptic inputs from Ap fiber was increased from 7 % to more than
30 % following 7-10 days after inflammation. The enhancement of excitatory synaptic responses of SG
neurons at early stages of peripheral inflammation may contribute to, at least in part, the induction of plastic
changes in sensory circuits in the spinal cord.
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Distinct mechanisms involving pain processing between neuropathic and chronic
inflammatory pain-like state in mice

Yoshinori Yajima, Minoru Narita and Tsutomu Suzuki
Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences,

Tokyo Japan

Abstract: Partial sciatic nerve ligation and intraplantar injection of complete Freund’s adjuvant (CFA) in mice
caused a marked and persistent decrease in latencies of the paw withdrawal from a thermal stimulus only on
the ipsilateral side. Thermal hyperalgesia caused by nerve ligation was completely reversed by repeated
intrathecal (i.t.) injection of a specific antibody to brain-derived neurotrophic factor (BDNF) and a selective
inhibitor for protein kinase C (PKC), whereas the same treatment failed to suppress the CFA-induced thermal
hyperalgesia in mice. In addition, the decreased thermal threshold induced by nerve ligation was reduced in
BDNF hetero-knockout mice. Sciatic nerve ligation caused a significant increase in the membrane-bound
protein levels of TrkB, a receptor for BDNF, and PKCyin the mouse spinal cord. It should be noted that the
immunoreactivities to BDNF and activated form of conventional PKC (cPKC) were clearly increased on the
ipsilateral superficial layers of the dorsal horn of the spinal cord in nerve-ligated mice as compared to that in
sham-operated mice. On the contrary, CFA-induced thermal hyperalgesia can be reversed by repeated i.t.
injection of a selective PKA inhibitor, whereas the same treatment failed to reverse the thermal hyperalgesia
induced by nerve ligation. Additionally, the immunoreactivity to activated form of PKA on the ipsilateral
superficial dorsal horn of the spinal cord in CFA-injected mice was significantly increased as compared to that
in saline-injected mice. These findings provide further evidence that nerve injury-induced thermal
hyperalgesia may result from the activation of cPKC through the BDNF/TrkB-mediated signaling pathway in
the spinal cord. In contrast, the activation of spinal PKA may contribute to the development of thermal
hyperalgesia induced by inflammation in mice. Such findings raise the fascinating possibility that there are the
distinct intracellular mechanisms involving pain processing between neuropathic and persistent inflammatory

pain-like state in mice.
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The plasticity in neuropathic pain.
Makoto I noue, Hiroshi Ueda
Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of
Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Summary: Neuropathic pain is resistance to morphine and NSAIDs. To clarify the molecular mechanism of such
pain, we measured the gene expression in DRG of mice, which were given partial sciatic nerve ligation or treated
with streptozotocin. Immnohistochemical study demonstrated that TRPV1 (VR1) signal was newly observed on
myelinated A-fibersin DRG of nerve-injured mice and streptozotocin-induced diabetic model mice. Furthermore,
the application of capsaicin cream in such neuropathic pain models blocked the responses upon prostaglandin |,
(i.pl.), which are not affected by the cream in naive mice. Altogether our results suggest that novel expression of
TRPV1 on myelinated fibers might contribute to the analgesic affect of topical capsaicin in both neuropathic

pain.
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